19 research outputs found

    Complex Networks from Classical to Quantum

    Full text link
    Recent progress in applying complex network theory to problems in quantum information has resulted in a beneficial crossover. Complex network methods have successfully been applied to transport and entanglement models while information physics is setting the stage for a theory of complex systems with quantum information-inspired methods. Novel quantum induced effects have been predicted in random graphs---where edges represent entangled links---and quantum computer algorithms have been proposed to offer enhancement for several network problems. Here we review the results at the cutting edge, pinpointing the similarities and the differences found at the intersection of these two fields.Comment: 12 pages, 4 figures, REVTeX 4-1, accepted versio

    Entrograms and coarse graining of dynamics on complex networks

    Full text link
    Using an information theoretic point of view, we investigate how a dynamics acting on a network can be coarse grained through the use of graph partitions. Specifically, we are interested in how aggregating the state space of a Markov process according to a partition impacts on the thus obtained lower-dimensional dynamics. We highlight that for a dynamics on a particular graph there may be multiple coarse grained descriptions that capture different, incomparable features of the original process. For instance, a coarse graining induced by one partition may be commensurate with a time-scale separation in the dynamics, while another coarse graining may correspond to a different lower-dimensional dynamics that preserves the Markov property of the original process. Taking inspiration from the literature of Computational Mechanics, we find that a convenient tool to summarise and visualise such dynamical properties of a coarse grained model (partition) is the entrogram. The entrogram gathers certain information-theoretic measures, which quantify how information flows across time steps. These information theoretic quantities include the entropy rate, as well as a measure for the memory contained in the process, i.e., how well the dynamics can be approximated by a first order Markov process. We use the entrogram to investigate how specific macro-scale connection patterns in the state-space transition graph of the original dynamics result in desirable properties of coarse grained descriptions. We thereby provide a fresh perspective on the interplay between structure and dynamics in networks, and the process of partitioning from an information theoretic perspective. We focus on networks that may be approximated by both a core-periphery or a clustered organization, and highlight that each of these coarse grained descriptions can capture different aspects of a Markov process acting on the network.Comment: 17 pages, 6 figue

    Analysis of the Equilibrium and Kinetics of the Ankyrin Repeat Protein Myotrophin

    Full text link
    We apply the Wako-Saito-Munoz-Eaton model to the study of Myotrophin, a small ankyrin repeat protein, whose folding equilibrium and kinetics have been recently characterized experimentally. The model, which is a native-centric with binary variables, provides a finer microscopic detail than the Ising model, that has been recently applied to some different repeat proteins, while being still amenable for an exact solution. In partial agreement with the experiments, our results reveal a weakly three-state equilibrium and a two-state-like kinetics of the wild type protein despite the presence of a non-trivial free-energy profile. These features appear to be related to a careful "design" of the free-energy landscape, so that mutations can alter this picture, stabilizing some intermediates and changing the position of the rate-limiting step. Also the experimental findings of two alternative pathways, an N-terminal and a C-terminal one, are qualitatively confirmed, even if the variations in the rates upon the experimental mutations cannot be quantitatively reproduced. Interestingly, folding and unfolding pathway appear to be different, even if closely related: a property that is not generally considered in the phenomenological interpretation of the experimental data.Comment: 27 pages, 7 figure

    Quantum Transport Enhancement by Time-Reversal Symmetry Breaking

    Get PDF
    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.Comment: 6+5 page

    Community Detection in Quantum Complex Networks

    Full text link
    Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, in static or interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems---a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.Comment: 16 pages, 4 figures, 1 tabl

    Chiral Quantum Walks

    Get PDF
    Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time-symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time-asymmetry. Moreover, we show that time-asymmetry in circuits can be controlled using local gates only, and can simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport, and imply that time-asymmetry represents an omnipresent yet poorly understood effect in quantum information science.Comment: 9 pages, 4 figures, REVTeX 4.1 - published versio

    Measuring dynamical systems on directed hyper-graphs

    Full text link
    Networks and graphs provide a simple but effective model to a vast set of systems which building blocks interact throughout pairwise interactions. Unfortunately, such models fail to describe all those systems which building blocks interact at a higher order. Higher order graphs provide us the right tools for the task, but introduce a higher computing complexity due to the interaction order. In this paper we analyze the interplay between the structure of a directed hypergraph and a linear dynamical system, a random walk, evolving on it. How can one extend network measures, such as centrality or modularity, to this framework? Instead of redefining network measures through the hypergraph framework, with the consequent complexity boost, we will measure the dynamical system associated to it. This approach let us apply known measures to pairwise structures, such as the transition matrix, and determine a family of measures that are amenable of such procedure.Comment: 8 pages, 5 figure

    MS/MS Spectra Interpretation as a Statistical–Mechanics Problem

    No full text
    We describe a new method for peptide sequencing based on the mapping of the interpretation of tandem mass spectra onto the analysis of the equilibrium distribution of a suitably defined physical model, whose variables describe the positions of the fragmentation sites along a discrete mass index. The model is governed by a potential energy function that, at present, we derive ad hoc from the distribution of peaks in a data set of experimental spectra. The statistical–physics perspective prompts for a consistent and unified approach to de novo and database-search methods, which is a distinctive feature of this approach over alternative ones: the characterization of the ground state of the model allows the de novo identification of the precursor peptide; the study of the thermodynamic variables as a function of the (fictitious) temperature gives insight on the quality of the prediction, while the probability profiles at nonzero temperature reveal, on one hand, which fragments are more reliably predicted. On the other hand, they can be used as a spectrum-adapted, a posteriori score for database search. Results obtained with two different test data sets reveal a performance similar to that of other de novo and database-search methods, which is reasonable, given the lack of an aggressive optimization of the energy function at this stage. An important feature of the method is that it is quite general and can be applied with different choices of the energy function: we discuss its possible improvements and generalizations

    State Aggregations in Markov Chains and Block Models of Networks

    No full text
    We consider state-aggregation schemes for Markov chains from an information-theoretic perspective. Specifically, we consider aggregating the states of a Markov chain such that the mutual information of the aggregated states separated by T time steps is maximized. We show that for T ¼ 1 this recovers the maximum-likelihood estimator of the degree-corrected stochastic block model as a particular case, which enables us to explain certain features of the likelihood landscape of this generative network model from a dynamical lens. We further highlight how we can uncover coherent, long-range dynamical modules for which considering a timescale T ≫ 1 is essential. We demonstrate our results using synthetic flows and real-world ocean currents, where we are able to recover the fundamental features of the surface currents of the oceans

    Assessing the influence of French vaccine critics during the two first years of the COVID-19 pandemic

    No full text
    International audienceWhen the threat of COVID-19 became widely acknowledged, many hoped that this pandemic would squash “the anti-vaccine movement”. However, when vaccines started arriving in rich countries at the end of 2020, it appeared that vaccine hesitancy might be an issue even in the context of this major pandemic. Does it mean that the mobilization of vaccine-critical activists on social media is one of the main causes of this reticence to vaccinate against COVID-19? In this paper, we wish to contribute to current work on vaccine hesitancy during the COVID-19 pandemic by looking at one of the many mechanisms which can cause reticence towards vaccines: the capacity of vaccine-critical activists to influence a wider public on social media. We analyze the evolution of debates over the COVID-19 vaccine on the French Twittosphere, during two first years of the pandemic, with a particular attention to the spreading capacity of vaccine-critical websites. We address two main questions: 1) Did vaccine-critical contents gain ground during this period? 2) Who were the main actors in the diffusion of these contents? While debates over vaccines experienced a tremendous surge during this period, the share of vaccine-critical contents in these debates remains stable except for a limited number of short periods associated with specific events. Secondly, analyzing the community structure of the re-tweets hyper-graph, we reconstruct the mesoscale structure of the information flows, identifying and characterizing the major communities of users. We analyze their role in the information ecosystem: the largest right-wing community has a typical echo-chamber behavior collecting all the vaccine-critical tweets from outside and recirculating it inside the community. The smaller left-wing community is less permeable to vaccine-critical contents but, has a large capacity to spread it once adopted
    corecore